Module 5

1. Deflection of Beams
2. Transformation of Stress and strain

Deflection and Slope of Beams

- As load is applied on a beam, it deflects.
- The deflection can be observed and measured directly.
- Strength and stiffness - design criteria for beams
- Strength criteria - SF \& BM
- Stiffness criteria - deflection
- Elastic curve.

Elastic curve

Beam Differential Equation OR

Differential Equation for Deflection

Elastic curve

Consider a segment $P Q$ of infinitesimal length $d s$ of the elastic curve of a beam

 R be the radius of curvature and $d \theta$ the included angle of the segment Then, the length $d s=R \cdot d \theta$As $d s$ is an infinitesimal length, it can be assumed to be the hypotenuse of a right-angled triangle $D E F$

The slope of the curve at the point P

$$
\begin{equation*}
\tan \theta=\frac{d y}{d x} \tag{i}
\end{equation*}
$$

Differentiating (i) with respect to x,

$$
\begin{aligned}
& \sec ^{2} \theta \cdot \frac{d \theta}{d x}=\frac{d^{2} y}{d x^{2}} \\
& \text { or } \sec ^{2} \theta \cdot \frac{d s}{R} \cdot \frac{1}{d x}=\frac{d^{2} y}{d x^{2}} \\
& \text { or } \frac{\sec ^{3} \theta}{R}=\frac{d^{2} y}{d x^{2}} \ldots\left(\because \frac{d s}{d x}=\sec \theta\right) \\
& \qquad \frac{d^{2} y}{d x^{2}}=\frac{\left(1+\tan ^{2} \theta\right)^{3 / 2}}{R} \quad\left[\sec \theta=\left(1+\left(\tan ^{2} \theta\right)^{1 / 2}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{1}{R}=\frac{M}{E I} \\
& E I \frac{d^{2} y}{d x^{2}}=M
\end{aligned}
$$

the governing differential equation of the beam

- Flexural Rigidity
- The moment sustained by an element of the beam is proportional to EI
- Thus EI is an index of the bending (flexural) strength of an element - called Flexural Rigidity of the element.
- Some important equations

We have deflection $=y$
Slope $=\frac{d y}{d x}$
Moment, $M=E I \frac{d^{2} y}{d x^{2}}$
Shear force, $F=\frac{d M}{d x}=E I \frac{d^{3} y}{d x^{3}}$
Load intensity, $w=\frac{d F}{d x}=E I \frac{d^{4} y}{d x^{4}}$

Slope and Deflection at a point

Methods of Solution

1. Double integration method
2. Macaulay's method
3. Moment area method
4. Conjugate beam method

Double Integration Method

- The beam differential equation is integrated twice - deflection of beam at any c / s.
$E I \frac{d y}{d x}=\int M \cdot d x+C_{1}$ from which slope can be calculated
$E I \cdot y=\iint(M \cdot d x)+C_{1} x+C_{2}$ from which deflection is known
- The constants of integration are found by applying the end conditions.
- a) Cantilever with concentrated load at free end

Bending Moment at the section $=-\mathrm{W}(1-\mathrm{x})$, being hogging
Or EI $\frac{d^{2} y}{d x^{2}}=-\mathrm{W}(1-\mathrm{x})$
Integrating, EI $\frac{d y}{d x}=-W\left(l x-\frac{x^{2}}{2}\right)+C_{1}$
At $\mathrm{x}=0, \frac{d y}{d x}=0$, therefore $\mathrm{C}_{1}=0$,
Thus EI $\frac{d y}{d x}=-W\left(l x-\frac{x 2}{2}\right)$
Or Slope, $\frac{d y}{d x}=-\frac{W}{2 E I}\left(2 l x-x^{2}\right)$

EI $\frac{d y}{d x}=-W\left(l x-\frac{x 2}{2}\right)$
Integrating again, EI y $=-W\left(\frac{l x^{2}}{2}-\frac{x^{3}}{6}\right)+C_{2}$
At x $=0, \mathrm{y}=0$, therefore $C_{2}=0$,
Thus EIy $=-\mathrm{W}\left(\frac{l x^{2}}{2}-\frac{x^{3}}{6}\right)$
Or Deflection, $y=-\frac{W}{6 E I}\left(3 l x^{2}-x^{3}\right)$
At the free end, $\mathrm{x}=\mathrm{l}$, the slope and deflection are maximum and are given by

$$
\text { Slope }=-\frac{W l^{2}}{2 E I} \text { and deflection }=-\frac{W l^{3}}{3 E I}
$$

b) Concentrated load not at free end

- Between A and C at any distance x from A, $M=-W(a-x)$
- Equations of slope and deflection can be obtained as in previous case (replacing ℓ by a)

$$
\text { Slope, } \quad \frac{d y}{d x}=-\frac{W}{2 E I}\left(2 a x-x^{2}\right)
$$

$$
\text { Deflection, } y=-\frac{W}{6 E I}\left(3 a x^{2}-x^{3}\right)
$$

$$
\text { At } \mathrm{C}, \mathrm{x}=\mathrm{a} \text {; hence } \frac{d y}{d x}=-\frac{W a^{2}}{2 E I}
$$

$$
\text { and } y=-\frac{W a^{3}}{3 E I}
$$

- The beam will bend only between A and C and between B and C it will remain straight (as $B M$ between B and $C=0$)
- Hence slope at $B=$ slopeat $C=d y / d x=G F / G E=-\frac{W a^{2}}{2 E I}$
- Now deflection at $\mathrm{B}=$ deflection at $\mathrm{C}+\mathrm{GF}$
- = deflection at $C+\left(-\frac{W a^{2}}{2 E I}\right) G E$
ie, Deflectionat $\mathrm{B}=-\frac{W a^{3}}{3 E I}-\frac{W a^{2}}{2 E I}(l-a)$

If W is at the midpoint, deflection $=\left[\frac{W(l / 2)^{3}}{3 E I}+\frac{W(l / 2)^{2}}{2 E I} \cdot \frac{l}{2}\right]=\frac{5 W l^{3}}{48 E I}$

(b) Straight

c) UDL on whole span

At a section at a distance x from the free end,

$$
E I \frac{d^{2} y}{d x^{2}}=M=-\frac{w x^{2}}{2}
$$

Integrating, $E I \frac{d y}{d x}=-\frac{w x^{3}}{6}+C_{1}$

$$
\text { At } x=l, \frac{d y}{d x}=0, \therefore C_{1}=\frac{w l^{3}}{6}
$$

Thus, $E I \frac{d y}{d x}=-\frac{w x^{3}}{6}+\frac{w l^{3}}{6}=\frac{w}{6}\left(l^{3}-x^{3}\right)$

Integrating again, $E I \cdot y=-\frac{w x^{4}}{24}+\frac{w l^{3}}{6} x+C_{2}$
At $A, x=l, y=0, \therefore 0=-\frac{w l^{4}}{24}+\frac{w l^{3}}{6} \cdot l+C_{2}$
or $C_{2}=-\frac{w l^{4}}{8}$
Thus, $\quad E I \cdot y=-\frac{w x^{4}}{24}+\frac{w l^{3}}{6} x-\frac{w l^{4}}{8}$
Therefore, slope and deflection are given by,

$$
\frac{d y}{d x}=\frac{w}{6 E I}\left(l^{3}-x^{3}\right) \text { and } y=-\frac{w}{24 E I}\left(x^{4}-4 l^{3} x+3 l^{4}\right)
$$

Maximum slope $=\frac{w l^{3}}{6 E I}$ at $x=0$

Maximum deflection $=-\frac{w l^{4}}{8 E I}$ at $x=0$
If origin is taken at the fixed end, slope and deflection can be worked out to be

$$
y^{\prime}=-\frac{w}{6 E I}\left(3 l^{2} x-3 l x^{2}+x^{3}\right) ; \quad y=-\frac{w}{24 E I}\left(6 l^{2} x^{2}-4 l x^{3}+x^{4}\right)
$$

d) UDL on a part of span from fixed end

- Homework

At $C, \quad \frac{d y}{d x}=-\frac{w a^{3}}{6 E I}$ and $y_{c}=-\frac{w a^{4}}{8 E I} \cdots(l=x=a)$
Between $C B$, at any section at a distance x from $A, M=0$,
$\therefore E I \frac{d^{2} y}{d x^{2}}=0 \quad$ or $\quad \frac{d^{2} y}{d x^{2}}=0 \quad$ or $\quad \frac{d y}{d x}=C_{1}$
i.e. the slope is constant between $C B$ and is equal to slope at C.

$$
\frac{d y}{d x}=y^{\prime}=\frac{G F}{G E}=-\frac{w a^{3}}{6 E I} \quad \text { or } \quad G F=y^{\prime} \cdot G E
$$

Deflection at $B=$ Deflection at $C+G F$

$$
=\text { Deflection at } C+y^{\prime} \cdot G E
$$

$$
=-\frac{w a^{4}}{8 E I}-\frac{w a^{3}}{6 E I} \cdot(l-a)
$$

e) UDL on a part of span from free end

- Homework

(v) Uniformly Distributed Load on a Part of Span from Free End The slope and the deflection at B can be found by first considering the cantilever loaded for the whole span (Fig. 7.8a) and then deducting the effect for the span loaded from A to C upwards (Fig. 7.8b).

(a)

Thus slope, $\frac{d y}{d x}=\frac{w l^{3}}{6 E I}-\frac{w(l-a)^{3}}{6 E I}$
Deflection can be found as follows,

- For whole span having uniformly distributed load, $y_{b}=\frac{w l^{4}}{8 E I}$
(downwards)
- For span loaded between $A C$,

$$
\frac{w(l-a)^{4}}{8 E I}+\frac{w(l-a)^{3}}{6 E I} \cdot a \quad \text { (upwards) }
$$

Thus deflection of B (downwards) $=\frac{w l^{4}}{8 E I}-\left[\frac{w(l-a)^{4}}{8 E I}+\frac{w(l-a)^{3}}{6 E I} \cdot a\right]$

f) A couple at the free end

$$
E I \frac{d^{2} y}{d x^{2}}=-M
$$

Integrating, $E I \frac{d y}{d x}=-M x+C_{1}$

$$
\text { At. } x=0, \frac{d y}{d x}=0, \therefore C_{1}=0 \text {; Thus, } E I \frac{d y}{d x}=-M x
$$

Integrating again, $E I \cdot y=-M \frac{x^{2}}{2}+C_{2}$

$$
\text { At } x=0, y=0, \therefore C_{2}=0 \text {; Thus, } E I y=-\frac{M}{2} x^{2}
$$

$$
\frac{d y}{d x}=-\frac{M}{E I} x(\text { linear }) \text { and } y=-\frac{M}{2 E I} x^{2}(\text { parabola })
$$

g) Distributed load of varying intensity, zero at free end

Intensity of loading at any cross-section C at a distance x from free end $=\frac{w x}{l}$
Bending moment at $C=$ load on $C B \mathrm{X}$ distance of centre of load

$$
\begin{gathered}
=\left(\frac{1}{2} \frac{w x}{l} \cdot x\right) \cdot \frac{x}{3}=\frac{w x^{3}}{6 l} \\
E I \frac{d^{2} y}{d x^{2}}=-\frac{w x^{3}}{6 l} \\
\text { Integrating, } E I \frac{d y}{d x}=-\frac{w x^{4}}{24 l}+C_{1} \\
\text { At } x=l, \frac{d y}{d x}=0, \therefore C_{1}=\frac{w l^{3}}{24} \\
\text { Thus, } E I \frac{d y}{d x}=-\frac{w x^{4}}{24 l}+\frac{w l^{3}}{24}
\end{gathered}
$$

Integrating again, $E I \cdot y=-\frac{w x^{5}}{120 l}+\frac{w l^{3} x}{24}+C_{2}$
At $x=l, y=0, \therefore 0=-\frac{w l^{4}}{120}+\frac{w l^{4}}{24}+C_{2}$ or $C_{2}=-\frac{w l^{4}}{30}$
Thus, $E I \cdot y=-\frac{w x^{5}}{120 l}+\frac{w l^{3} x}{24}-\frac{w l^{4}}{30}$
Therefore, slope and deflection at free end i.e. at $x=0$,

$$
\frac{d y}{d x}=\frac{w l^{3}}{24 E I} \text { and } y=-\frac{w l^{4}}{30 E I}
$$

Simply supported Beams

a) Concentrated load at midspan

$$
\therefore \quad R_{a}=R_{b}=W / 2
$$

Consider a section from A (origin at A),

$$
\begin{aligned}
& M=\frac{W}{2} x \\
& E I \frac{d^{2} y}{d x^{2}}=\frac{W}{2} x
\end{aligned}
$$

Integrating, $\quad E I \frac{d y}{d x}=\frac{W x^{2}}{4}+C_{1}$
At $x=\frac{l}{2}, \frac{d y}{d x}=0, \therefore C_{1}=-\frac{W l^{2}}{16} \therefore E I \frac{d y}{d x}=\frac{W x^{2}}{4}-\frac{W l^{2}}{16}$
Integrating again, $E I y=\frac{W x^{3}}{12}-\frac{W l^{2} x}{16}+C_{2}$
At $x=0, y=0, \therefore E I y=\frac{W x^{3}}{12}-\frac{W l^{2} x}{16}$
Therefore, slope and deflection are given by,

$$
\frac{d y}{d x}=-\frac{W}{16 E I}\left(l^{2}-4 x^{2}\right) \text { and } y=-\frac{W}{48 E I}\left(3 l^{2} x-4 x^{3}\right)
$$

At $A, x=0, \therefore$ slope $=-\frac{W l^{2}}{16 E I}$
Deflection at $C=-\frac{W}{48 E I}\left(3 l^{2} \cdot \frac{l}{2}-4 \cdot \frac{l^{3}}{8}\right)=-\frac{W l^{3}}{48 E I}$

Slope and deflection for the portion $C B$ is symmetric as for $A C$. However, equations for the portion $C B$ with A as origin can also be formed in the following form:

$$
\frac{d y}{d x}=-\frac{W}{16 E I}\left(4 x^{2}-8 l x+3 l^{2}\right)
$$

$$
y=-\frac{W}{48 E I}\left(4 x^{3}+9 l^{2} x-l^{3}-12 l x^{2}\right)
$$

b) Eccentric concentrated load

- Homework

c) UDL on whole span

$\therefore \quad R_{a}=R_{b}=w l / 2$
Consider a section of the beam from A (origin at A),

$$
E I \frac{d^{2} y}{d x^{2}}=\frac{w l x}{2}-\frac{w x^{2}}{2}
$$

Integrating, $E I \frac{d y}{d x}=\frac{w l x^{2}}{4}-\frac{w x^{3}}{6}+C_{1}$
At $x=\frac{l}{2}, \frac{d y}{d x}=0, \therefore 0=\frac{w l}{4} \cdot \frac{l^{2}}{4}-\frac{w}{6} \cdot \frac{l^{3}}{8}+C_{1} \quad$ or $\quad C_{1}=-\frac{w l^{3}}{24}$
$\therefore \quad E I \frac{d y}{d x}=\frac{w l x^{2}}{4}-\frac{w x^{3}}{6}-\frac{w l^{3}}{24}$
Integrating again, $E I y=\frac{w l x^{3}}{12}-\frac{w x^{4}}{24}-\frac{w l^{3}}{24} x+C_{2}$
At $x=0, y=0, \therefore C_{2}=0 \therefore E I y=\frac{w l x^{3}}{12}-\frac{w x^{4}}{24}-\frac{w l^{3}}{24} x$

The maximum deflection is at the midspan, i.e., at $x=l / 2$,

$$
y_{\max }=\frac{1}{E I}\left[\frac{w l}{12}\left(\frac{l}{2}\right)^{3}-\frac{w}{24}\left(\frac{l}{2}\right)^{4}-\frac{w l^{3}}{24 E I}\left(\frac{l}{2}\right)\right]=-\frac{5}{384 E I} w l^{4}
$$

Slope at $A,(x=0), E I \frac{d y}{d x}=-\frac{w l^{3}}{24}$ or $\frac{d y}{d x}=-\frac{w l^{3}}{24 E I}$

d) Distributed load of varying intensity

- Homework

e) Couple at one end

Taking moments about $A, R_{b} \times l=M$ or $R_{b}=\frac{M}{l}(\uparrow)$
Similarly, $R_{a}=\frac{M}{l}(\downarrow)$

At any section x from $A, E I \frac{d^{2} y}{d x^{2}}=-\frac{M}{l} x+M$
Integrating,

$$
E I \frac{d y}{d x}=-\frac{M x^{2}}{2 l}+M x+C_{1}
$$

Integrating again, $E I y=-\frac{M x^{3}}{6 l}+\frac{M}{2} x^{2}+C_{1} x+C_{2}$

- At $A, x=0, y=0$

$$
\begin{aligned}
& \text { Ely }=-\frac{M x^{3}}{6 l}+\frac{M}{2} x^{2}+C_{1} x+C_{2} \text { or } C_{2}=0 \\
& \text { At } B, x=l, y=0
\end{aligned}
$$

$$
\text { or } \quad 0=-\frac{M x^{3}}{6 l}+\frac{M}{2} x^{2}+C_{1} x
$$

or $\quad C_{1}=\frac{M l^{2}}{6 l}-\frac{M}{2 l} l^{2}=-\frac{M l}{3}$

Thus slope and deflection equations are

$$
\begin{aligned}
& \quad E I \frac{d y}{d x}=-\frac{M x^{2}}{2 l}+M x-\frac{M l}{3}=-\frac{M}{6 l}\left(3 x^{2}-6 l x+2 l^{2}\right) \\
& \text { and } \quad E I y=-\frac{M x^{3}}{6 l}+\frac{M}{2} x^{2}+C_{1} x=-\frac{M}{6 l}\left(x^{3}-3 l x^{2}+2 l^{2} x\right) \\
& \text { Slope at } A=-\frac{M}{6 l E I}\left(2 l^{2}\right)=-\frac{M l}{3 E I} \\
& \text { Slope at } B=-\frac{M}{6 l E I}\left(3 l^{2}-6 l^{2}+2 l^{2}\right)=\frac{M l}{6 E I}
\end{aligned}
$$

Maximum deflection will be where slope is zero, i.e.,

$$
3 x^{2}-6 l x+2 l^{2}=0 \text { or } x=0.423 l
$$

Thus maximum deflection,

$$
\begin{aligned}
y_{\max } & =-\frac{M}{6 E I l}\left(x^{3}-3 l x^{2}+2 l^{2} x\right) \\
& =-\frac{M}{6 E I l}\left[(0.423 l)^{3}-3 l \times(0.423 l)^{2}+2 l^{2} \times 0.423\right] \\
& =-\frac{0.64 M l^{2}}{6 E I}
\end{aligned}
$$

Macaulay's method OR

Method of Singularity function

While applying the double integration method, a separate expression for the bending moment is needed to be written for each section of the beam, each producing a different equation with its own constants of integration.

The method is convenient for simple cases
In Macaulay's method, a single equation is written for the bending moment for all the portions of the beam. The equation is formed in such a way that the same constants of integration are applicable to all portions.

$$
\left.E I \frac{d^{2} y}{d x^{2}}=M=-W_{1} x\left|+R_{1}(x-a)\right|-W_{2}(x-b) \right\rvert\,-W_{3}(x-c)
$$

In the above expression, there are separation lines.

- The portion to the left of the first separation line is valid for the portion $A C$.
- The portion to the left of the second separation line is valid for the portion $C D$.
- The portion to the left of the third separation line is valid for the portion $D E$.
- The whole of the expression is valid for the portion $E B$.

It may be noted that the same expression is applicable to all the portions of the beam if all negative terms inside the brackets are omitted for a particular section. If x is less than c, then the last:term is omitted. If x is less than b, then the last two terms are omitted and so on. While integrating, the brackets are integrated as a whole, i.e.,

$$
\begin{gathered}
\left.E I \frac{d^{2} y}{d x^{2}}=M=-W_{1} x\left|+R_{1}(x-a)\right|-W_{2}(x-b) \right\rvert\,-W_{3}(x-c) \\
\left.E I \frac{d y}{d x}=-W_{1} \frac{x^{2}}{2}+C_{1}\left|+\frac{R_{1}}{2}(x-b)^{2}\right|-\frac{W_{2}}{2}(x-b)^{2} \right\rvert\,-\frac{W_{3}}{2}(x-c)^{2} \\
\left.E I y=-W_{1} \frac{x^{3}}{6}+C_{1} x+C_{2}\left|+\frac{R_{1}}{6}(x-a)^{3}\right|-\frac{W_{2}}{6}(x-b)^{3} \right\rvert\,-\frac{W_{3}}{6}(x-c)^{3}
\end{gathered}
$$

Moment Area Method OR

Mohr's Theorems

- Convenient for beams acted upon with point loads where BMD consists of triangles and rectangles.
- For the case of UDL, Macaulay's method is most uitable.

Now consider an element of small length $C D$ of the beam at a distance x from B as shown in figure. Let $M=$ Bendingmansent b / w C and $D .: d x=$ length of $C D$.
$R=$ radius of the bent beam
$d \theta=$ angle included b / w the tangents at C^{\prime} and D^{\prime} or it is the change in slope over the elementary portion 'dx'
$A=$ area of the bending moment diagram over the entire span
$\bar{x}=$ Horizontal distance of the centre of gravity (G) of the entire BM diagram from-the reference line.
$\theta=$ Angle in radians included b/w the tangents drawn at the two extrimities of the beam.
ie, b/w A and B and facing the reference line.

From the figure $d x=R d \theta$

$$
\text { Or } d \theta=\frac{d x}{R}=\frac{M}{E I} d x
$$

This equation gives the change of slope between C and D
\therefore The total change of slope from A to B may be found by integrating the above eqn: b/w the limits otol

$$
\begin{aligned}
\therefore \theta & =\int_{0}^{l} \frac{m d x}{E_{I}} \\
& =\frac{1}{E_{I}} \int_{0}^{l} m d x .
\end{aligned}
$$

But $\int_{0}^{l} m d x=$ Area of the Bending moment diagainover -the entire span $=A$.

$$
\begin{equation*}
\therefore \theta=\frac{A}{E I} . \tag{1}
\end{equation*}
$$

- From the above Mohr's first moment-area theorem can be stated as below:
- "The difference of slopes between any two points on an elastic curve of a beam is equal to the net area of the BMD between these points divided by EI".

Now draw the tangents at C^{\prime} and D^{\prime}. Let these two tangents meet at P and Q on the reference line as shown is fig: Now $P Q=x d \theta$

$$
=x \frac{M d x}{E I} .
$$

The total intercept on the reference line may be found out by integrating the above eqn: b/w the limits o and l.

$$
\begin{aligned}
\therefore y & =\int_{0}^{l} M d x \frac{\times x}{E I} \\
& =\frac{1}{E I} \int_{0}^{l} M x d x
\end{aligned}
$$

But $M x d x=$ moment of the area of the BM diagram over the portion $d x$ about the reference

$$
\begin{aligned}
& \therefore \int_{0}^{l} M x d x=\text { Moment of area af the BM diagram over the entire span } \\
& \text { I' about the reference line. } \\
&=A \bar{x} . \\
& \therefore y=\frac{A \bar{x}}{E I} \longrightarrow \text { (2) }
\end{aligned}
$$

The results given by ens (1) and (2) are known as Mon's theorem.

- The above equation leads to the statement of Mohr's second theorem.
- "The intercepts on a given line between the tangents to the elastic curve of a beam at any two points is equal to the net moment taken about the line of the area of the BMD between the two points divided by El".

Case I: Cantilever Beams
(1.) Point load at-ihe free end.

Fig shows a cantilever with a concentrated load W acting at the free and. The slope and deflection will be max. at the free end.

$$
\theta_{\max }=\frac{A}{E I}
$$

where $A=\frac{1}{2} l \times$ wal

$$
\therefore \theta_{\max }-\frac{W l^{2}}{2 E I}
$$

Now $y_{\text {max }}=\frac{A \bar{x}}{E_{I}}$
Here $\bar{x}=\frac{2}{3} l$.

$$
\begin{aligned}
\therefore y_{\text {max }} & =\frac{\frac{1}{2} w l^{2} \times \frac{2}{3} l}{E I} \\
y_{\text {max }} & =\frac{w l^{3}}{3 E I}
\end{aligned}
$$

(2). Concentrated load at any point.

Fig: shows a cantilever with a concentrated load acting at c at a distance ' a ' from fixed end.

$$
\theta_{\max }=\frac{A}{E I}
$$

Here, $\quad A=\frac{1}{2} \times a \times w a$

$$
\begin{aligned}
& =\frac{w a^{2}}{2} \\
\therefore \theta_{\text {max }} & =\frac{w a^{2}}{2 E I}
\end{aligned}
$$

Now $y_{\text {max }}=\frac{A \bar{x}}{E I}$

Here, $\bar{x}=(l-a)+\frac{2}{3} a$.

$$
\begin{aligned}
\therefore y_{\text {max }} & =\frac{\frac{1}{2} w a^{2}\left[(l-a)+\frac{2}{3} a\right]}{E I} \\
y_{\text {max }} & =\frac{w a^{3}}{3 E I}+\frac{w a^{2}}{2 E I}(l-a)
\end{aligned}
$$

At the point of application of the load, $y=\frac{\frac{1}{2} \omega a^{2} \times \frac{2 a}{g}}{E I}$

$$
y=\frac{w a^{3}}{3 E I}
$$

By trensfering the och line to the point of application of load.
(3) Cantilever beam with UD load over entire span.

$$
\text { We have } \Theta_{\max }=\frac{A}{E I} \text {. }
$$

Here area of BM diagram $A=\frac{1}{3}$ bb

$$
\begin{aligned}
& =\frac{1}{3} \times l \times \frac{w l^{2}}{2} \\
\therefore \theta_{\max }= & \frac{w l^{3}}{6 E I}
\end{aligned}
$$

$$
\begin{aligned}
& y_{\max }=\frac{A \bar{x}}{E I} \\
& A=\frac{1}{3} \frac{w l^{3}}{2} \\
& \bar{x}=\frac{3}{4} l . \\
& \therefore y_{\text {max }}=\frac{w l^{4}}{8 E I}
\end{aligned}
$$

Case II: Simply supported Beams.
(1.) Concentrated Load at the midspan

Area of the BMD between A and $C=\frac{1}{2} \cdot \frac{l}{2} \cdot \frac{W l}{4}$

$$
=\frac{w l^{2}}{16}
$$

We have $\theta_{\text {max }}=\frac{A}{E I}$

$$
\therefore \text { Slope at } A=\frac{W l^{2}}{16 E I}
$$

and $y_{\max }=\frac{A \bar{x}}{E I}=\frac{\left(1 / 2 \cdot \frac{\omega l}{4} \cdot \frac{l}{2}\right)\left(\frac{2}{3} l / 2\right)}{E I}$
i., $y_{\max }=\frac{W l^{3}}{48 E I}$
(2) Uniformly distributed load.

In this case also the deflection will be max. at the midspan and slope will be max. at the ends.

Now $\theta_{\text {max }}=\frac{A}{E I}$.
Where $A=\frac{2}{3} \times \frac{l}{2} \times \frac{w l^{2}}{8}$.

$$
\therefore \theta_{\max }=\frac{w l^{3}}{24 E I}
$$

Now

$$
\begin{aligned}
y_{\text {max }} & =\frac{A \bar{x}}{E I} \\
& =\frac{A}{E I} \times \bar{x} \\
y_{\text {max }} & =\frac{w l^{3}}{24 E I} \times \frac{5}{8} \times \frac{l}{2} \quad \quad \text { where } \bar{x}=\frac{5}{8} \frac{l}{2} . \\
y_{\text {max }} & =\frac{5 W l^{4}}{384 E I}
\end{aligned}
$$

Conjugate Beam Method

We have, $E I \cdot \frac{d^{2} y}{d x^{2}}=M \quad$ or $\quad \frac{d^{2} y}{d x^{2}}=\frac{M}{E I}$
Differentiating it, $E I \cdot \frac{d^{3} y}{d x^{3}}=\frac{d M}{d x}=F$
Differentiating it again, $E I \cdot \frac{d^{4} y}{d x^{4}}=\frac{d F}{d x}=-w$

$$
\begin{aligned}
& \frac{d^{4} y}{d x^{4}}=-\frac{w}{E I} \quad \text { or } \quad \frac{d^{2}}{d x^{2}}\left(\frac{d^{2} y}{d x^{2}}\right)=-\frac{w}{E I} \\
& \frac{d^{2}}{d x^{2}}\left(\frac{M}{E I}\right)=-\frac{w}{E I} \quad \text { or } \quad \frac{d^{2} M}{d x^{2}}=-w
\end{aligned}
$$

$$
\begin{align*}
& \frac{d^{2} y}{d x^{2}}=\frac{M}{E I} \\
& \frac{d^{2} M}{d x^{2}}=-w \tag{ii}
\end{align*}
$$

- Thus as indicated by (ii), if w indicates the actual loading, and a bending moment diagram is drawn, it provides the bending moment at any cross-section of the beam.
- In a similar way it may be said from (i) that if the bending moment diagram (M/E) is assumed as the loading diagram on the beam (the beam is known as conjugate beam) and a new bending moment diagram is constructed from this, the diagram will be a defection curve.

A similar analogy for the slope can also be deduced

$$
\begin{gather*}
\frac{d^{2} y}{d x^{2}}=\frac{M}{E I} \\
\text { or } \frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{M}{E I} \\
\text { or } \frac{d}{d x}(\text { slope })=\frac{M}{E I} \tag{iii}
\end{gather*}
$$

$$
\text { Also, } \quad \frac{d F}{d x}=-w
$$

Thus shear force diagram drawn with $M / E I$ as loading will provide the slope at any section.

Find expressions for the central deflection and the slope at the ends of a simply supported beam carrying a central load by conjugate beam method.

maximum bending moment at the centre is $W / / 4$,

(b)

Now, in the conjugate beam method, this diagram is to be considered as loading diagram

first we need to find the reaction on the supports.

$$
R_{a}=R_{b}=\frac{W l}{4 E I} \times \frac{l}{2} \times \frac{1}{2}=\frac{W l^{2}}{16 E I}
$$

Deflections

Deflection y at any point at a distance x from A

$$
\begin{aligned}
& =\text { bending moment due to load on the conjugate beam } \\
& =\frac{W l^{2}}{16 E I} x-\frac{W l / 4 E I}{l / 2} \cdot x \cdot \frac{x}{2} \cdot \frac{x}{3}=\frac{W l^{2}}{16 E I} x-\frac{W}{12 E I} x^{3}=\frac{W}{48 E I}\left(3 l^{2} x-4 x^{3}\right)
\end{aligned}
$$

Slopes

Slope at any point at a distance x from A
$=$ Shearing force at the point due to load on the conjugate beam
$=\frac{W l^{2}}{16 E I}-\frac{W l / 4 E I}{l / 2} \cdot x \cdot \frac{x}{2}$
Slope at the ends $=\frac{W l^{2}}{16 E I} \quad \ldots \ldots(x=0)$

A 10 m long simply supported beam $A B$ carries loads of 80 kN and 60 kN at 2 m and 7 m respectively from $A . E=200 \mathrm{GPa}$ and $I=150 \times 10^{6} \mathrm{~mm}^{4}$. Determine the deflection and slope under the loads using conjugate beam method.

Taking moments about A,

$$
\begin{aligned}
& 10 R_{b}=80 \times 2+60 \times 7 \\
& \quad \text { or } \quad R_{b}=58 \mathrm{kN} \\
& R_{a}=80+60-58=82 \mathrm{kN}
\end{aligned}
$$

Bending moment at $C=82 \times 2=164 \mathrm{kN} \cdot \mathrm{m}$ Bending moment at $D=58 \times 3=174 \mathrm{kN} \cdot \mathrm{m}$

(a)

(b)

Conjugate beam

Bending moment (conjugate beam) diagram is shown in Fig. 7.69b.
Taking moments about B to find the reaction at A from conjugate loads,

$$
\begin{aligned}
10 R_{a} & =\left(164 \times 2 \times \frac{1}{2}\right)\left(\frac{2}{3}+8\right)+164 \times 5\left(3+\frac{5}{2}\right)+(174-164) \times 5 \times \frac{1}{2}\left(3+\frac{5}{3}\right)+174 \times 3 \times \frac{1}{2} \times 2 \\
10 R_{a} & =1421.3+4510+116.7+522 \quad \text { or } \quad R_{a}=657 \\
R_{b} & =164 \times(2 / 2)+164 \times 5+(174-164) \times(5 / 2)+174 \times(3 / 2)-657=613
\end{aligned}
$$

For conjugate beam

Shearing force at $C=657-164 \times(2 / 2)=493$
Shearing force at $D=-613+174 \times(3 / 2)=-352$
Bending moment at $C=657 \times 2-164 \times(2 / 3)=1204.7$
Bending moment at $D=613 \times 3-174 \times(3 / 2) \times 1=1578$

Slope and deflection $E I=200 \times 10^{6} \times\left(150 \times 10^{-6}\right)=30000 \mathrm{kN} \cdot \mathrm{m}^{2}$

Slope at $C=493 / 30000=0.0164 \mathrm{rad}$ Slope at $D=352 / 30000=0.0117 \mathrm{rad}$
Deflection at $C=1204.7 / 30000=0.04016 \mathrm{~m}=40.16 \mathrm{~mm}$
Deflection at $D=1578 / 30000=0.0526 \mathrm{~m}=52.26 \mathrm{~mm}$

